首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   9篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   11篇
  2012年   5篇
  2011年   5篇
  2010年   7篇
  2009年   11篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   10篇
  2002年   5篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有118条查询结果,搜索用时 46 毫秒
31.
32.
The myeloid translocation gene (MTG) homologue Nervy associates with PlexinA on the plasma membrane, where it functions as an A-kinase anchoring protein (AKAP) to modulate plexin-mediated semaphorin signaling in Drosophila. Mammalian MTG16b is an AKAP found in immune cells where plexin-mediated semaphorin signaling regulates immune responses. This study provides the first evidence that MTG16b is a dual AKAP capable of binding plexins. These interactions are selective (PlexinA1 and A3 bind MTG, while PlexinB1 does not) and can be regulated by PKA-phosphorylation. Collectively, these data suggest a possible mechanism for the targeting and integration of adenosine 3′,5′-cyclic monophosphate (cAMP) and semaphorin signaling in immune cells.

Structured summary

MINT-7556975: PlexinA3 (uniprotkb:P51805) physically interacts (MI:0915) with MTG 16b (uniprotkb:O75081) by anti tag coimmunoprecipitation (MI:0007)MINT-7557008: RI alpha (uniprotkb:Q9DBC7) physically interacts (MI:0915) with MTG 16b (uniprotkb:O75081) by anti bait coimmunoprecipitation (MI:0006)MINT-7556989: MTG 16b (uniprotkb:O75081) physically interacts (MI:0915) with PlexinA3 (uniprotkb:P51805) by pull down (MI:0096)  相似文献   
33.
Lee L 《Gene》2011,473(2):57-66
Motile cilia and flagella are organelles that, historically, have been poorly understood and inadequately investigated. However, cilia play critical roles in fluid clearance in the respiratory system and the brain, and flagella are required for sperm motility. Genetic studies involving human patients and mouse models of primary ciliary dyskinesia over the last decade have uncovered a number of important ciliary proteins and have begun to elucidate the mechanisms underlying ciliary motility. When combined with genetic, biochemical, and cell biological studies in Chlamydomonas reinhardtii, these mammalian genetic analyses begin to reveal the mechanisms by which ciliary motility is regulated.  相似文献   
34.
Rhim JH  Jang IS  Yeo EJ  Song KY  Park SC 《Aging cell》2006,5(6):451-461
Previously, we reported that lysophosphatidic acid (LPA)-induced adenosine 3',5'-cyclic monophosphate (cAMP) production by human diploid fibroblasts depends on the age of the fibroblasts. In this study, we examined the role of A-kinase anchoring proteins (AKAP) in the regulation of LPA-stimulated cAMP production in senescent fibroblasts. We found that levels of protein kinase C (PKC)-dependent AKAPs, such as Gravin and AKAP79, were elevated in senescent cells. Co-immunoprecipitation experiments revealed that Gravin and AKAP79 do not associate with adenylyl cyclase type 2 (AC2) but bind to AC4/6, which interacts with calcium-dependent PKCs alpha/beta both in young and senescent fibroblasts. When the expression of Gravin and AKAP79 was blocked by small interference RNA transfection, the basal level of cAMP was greatly reduced and the cAMP status after LPA treatment was also reversed. Protein kinase A showed a similar pattern in terms of its basal activity and LPA-dependent modulation. These data suggest that Gravin and to a lesser extent, AKAP79, may play important roles in maintaining the basal AC activity and in coupling the AC systems to inhibitory signals such as Gialpha in young cells, and to stimulatory signals such as PKCs in senescent cells. This study also demonstrates that Gravin is especially important for the long-term activation of PKC by LPA in senescent cells. We conclude that LPA-dependent increased level of cAMP in senescent human diploid fibroblasts is associated with increases in Gravin levels resulting in its increased binding with and activation of calcium-dependent PKC alpha/beta and AC4/6.  相似文献   
35.
In the course of evolution, Gram-positive bacteria, defined here as prokaryotes from the domain Bacteria with a cell envelope composed of one biological membrane (monodermita) and a cell wall composed at least of peptidoglycan and covalently linked teichoic acids, have developed several mechanisms permitting to a cytoplasmic synthesized protein to be present on the bacterial cell surface. Four major types of cell surface displayed proteins are currently recognized: (i) transmembrane proteins, (ii) lipoproteins, (iii) LPXTG-like proteins and (iv) cell wall binding proteins. The subset of proteins exposed on the bacterial cell surface, and thus interacting with extracellular milieu, constitutes the surfaceome. Here, we review exhaustively the current molecular mechanisms involved in protein attachment within the cell envelope of Gram-positive bacteria, from single protein to macromolecular protein structure.  相似文献   
36.
37.
Protein kinase A anchoring proteins (AKAPs), defined by their capacity to target the cAMP-dependent protein kinase to distinct subcellular locations, function as molecular scaffolds mediating the assembly of multicomponent complexes to integrate and organise multiple signalling events. Despite their central importance in regulating cellular processes, little is known regarding their diverse structures and molecular mechanisms. Here, using bioinformatics and X-ray crystallography, we define a central domain of AKAP18δ (AKAP18CD) as a member of the 2H phosphoesterase family. The domain features two conserved His-x-Thr motifs positioned at the base of a groove located between two lobes related by pseudo 2-fold symmetry. Nucleotide co-crystallisation screening revealed that this groove binds specifically to adenosine 5'-monophosphate (5'AMP) and cytosine 5'-monophosphate (5'CMP), with the affinity constant for AMP in the physiological concentration range. This is the first example of an AKAP capable of binding a small molecule. Our data generate two functional hypotheses for the AKAP18 central domain. It may act as a phosphoesterase, although we did not identify a substrate, or as an AMP sensor with the potential to couple intracellular AMP levels to PKA signalling events.  相似文献   
38.
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2 +-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2 + binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.  相似文献   
39.
Genetic and physical maps are powerful tools to anchor fragmented draft genome assemblies generated from next‐generation sequencing. Currently, two draft assemblies of Nelumbo nucifera, the genomes of ‘China Antique’ and ‘Chinese Tai‐zi’, have been released. However, there is presently no information on how the sequences are assembled into chromosomes in N. nucifera. The lack of physical maps and inadequate resolution of available genetic maps hindered the assembly of N. nucifera chromosomes. Here, a linkage map of N. nucifera containing 2371 bin markers [217 577 single nucleotide polymorphisms (SNPs)] was constructed using restriction‐site associated DNA sequencing data of 181 F2 individuals and validated by adding 197 simple sequence repeat (SSR) markers. Additionally, a BioNano optical map covering 86.20% of the ‘Chinese Tai‐zi’ genome was constructed. The draft assembly of ‘Chinese Tai‐zi’ was improved based on the BioNano optical map, showing an increase of the scaffold N50 from 0.989 to 1.48 Mb. Using a combination of multiple maps, 97.9% of the scaffolds in the ‘Chinese Tai‐zi’ draft assembly and 97.6% of the scaffolds in the ‘China Antique’ draft assembly were anchored into pseudo‐chromosomes, and the centromere regions along the pseudo‐chromosomes were identified. An evolutionary scenario was proposed to reach the modern N. nucifera karyotype from the seven ancestral eudicot chromosomes. The present study provides the highest‐resolution linkage map, the optical map and chromosome level genome assemblies for N. nucifera, which are valuable for the breeding and cultivation of N. nucifera and future studies of comparative and evolutionary genomics in angiosperms.  相似文献   
40.
Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water‐soluble and binds to different membrane mimetics would find broad application. The 33‐residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506‐binding region of the protein FKBP38 (FKBP38‐BD) and used 1H–15N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C‐terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6–8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl2 and CaCl2). The high water‐solubility of y1fatc enables its use for titration experiments against a membrane‐localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C‐terminal 17–11 residues of the 33‐residue long domain by 1D 1H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15N‐labeled target protein for NMR studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号